
Going around again - modelling standing
ovations with a flexible agent-based simulation

framework.

Philip Garnett

Department of Anthropology, Durham University, Dawson Building, South Road,
Durham, DH1 3LE. UK philip.garnett@durham.ac.uk

Abstract. We describe how we have used the CoSMoS process to trans-
form a computer simulation originally developed for the simulation of
plant development for use in modelling aspects of audience behaviour.
An existing agent-based simulator is re-factored to simulate a completely
different type of agent in 2D space. This is possible and desirable because
the original simulator was designed with the intention that it could eas-
ily be use to model a variety of different agents interacting in 2D and
3D space. The resulting simulation will be used to simulate the phe-
nomena of standing ovations in audiences as a model system of tipping
point behaviour. Continued development of this simulator, assisted by
the CoSMoS process, has resulted in a general purpose lightweight sim-
ulation framework.

1 Introduction

The dynamics of standing ovations incorporates many interesting aspects of
human behaviour and even with a simple computer simulation there are many
things to explore. The collective desire of an audience (or at least some parts
of an audience) to display their appreciation of something is interfered with by
that very human desire to not embarrass oneself. On the face of it this sounds
like a difficult system to understand. There are complex individual decisions
about how much you want to stand up and clap, or stay firmly rooted to your
seat. There is also the behaviour of your immediate neighbours to consider. If
the people sitting next to you start standing up, what do you do? Does that
overcome your reluctance to get up? Or if you stand up and they don’t, what
then? Sit down and shrink back into your seat? Then there is the pressure to
conform with the wider audience. If everyone on the other side is standing do
you spring up to get your side going, or wait to see if the enthusiasm diffuses
round to your section? From the perspective of the individual agents (or people)
there is a lot of complex decision making going on. However, at the population
level could there be a simple set of rules that are governing the global behaviour
of the system? In this paper we describe the process of re-factoring an existing
simulator that was built to be a flexible agent-based modelling platform, but
with a focus on a particular use, to allow us to model standing ovations as an



emergent behaviour. During the re-factoring process the simulation framework
has become increasingly modular and generalizable.

A simulation must be developed using a rigorous process of design, imple-
mentation, and validation if it is to be scientifically respectable, understandable
and reproducible. As we aim to maintain flexibility, the simulation tool will
need to be upgraded and enhanced in a principled manner as its requirements
change, and we use it to address new research questions. This helps ensure that
we fully understand the foundations of the platform before we build something
new on top. The CoSMoS (Complex Systems Modelling and Simulation) process
[1] provides a flexible approach designed to support the modelling and analysis
of complex systems, including the design and validation of appropriate computer
simulations.

We have previously used the CoSMoS process to guide the initial development
of a simulation of an abstract tissue level model of plant cells [8]. We then used
the CoSMoS process to enhance that existing model to produce a more capable
and efficient version of the simulation [7]. Here we present work using the same
process [1] to guide modification of the basic simulation framework to produce a
new simulation of standing ovations in simulated audiences. This work is further
evidence that the CoSMoS process can be used in an incremental manner to
assist in the reuse of existing simulation code.

In §2.1 we overview the CoSMoS process as used for modelling, designing,
and implementing simulations of human behaviour. In §2.2 we discuss the use
of UML as a suitable modelling language to support this process. We then use
the CoSMoS process components to structure the remaining sections. In §3 we
introduce the Research Context. In §4 we summarise the standing ovation Do-
main Model. In §5 we discuss how the Platform Model was developed using the
CoSMoS process. In §6 we conclude with a discussion of our experiences and
some preliminary results.

2 Background

2.1 CoSMoS Process: The modelling lifecycle

For this work we use the CoSMoS process as described in detail by Andrews et
al. [1], and used in our earlier work [8, 7]. The CoSMoS process provides a sys-
tematic approach to building models and simulations of complex systems, and
here we apply it to modelling human behaviour. The CoSMoS process is an in-
herently incremental process without a defined end point. It therefore lends itself
to producing a series of simulations aimed at answering a particular question.
This flexibility also allows for taking an existing simulation down a new path to
answer different questions. We [8, 7] and others [14, 4, 13] have successfully used
this process to assist in the production of simulations of complex biological sys-
tems. Summarised in figure 1, the version of the process used here contains the
following components (summarised from [1], and the description of the process
is taken from [7]):



Domain

Model

Platform

Model

Simulation

Platform

Results

Model

Domain
Research

Context

Fig. 1. The components of the CoSMoS process [1, fig.2.1]. Arrows indicate the main
information flows during the development of the different components. There is no
prescribed route through the process, in so far as going back a step at any point in the
process is allowed and often useful.

Research Context : the overall scientific Research Context. This includes the
motivation for doing the research, the questions to be addressed, and the
requirements for success.

Domain Model : conceptual “top-down” model of the real world system to be
simulated. The Domain Model is developed in conjunction with the domain
experts, with its scope determined by the Research Context. The model may
explicitly include various emergent properties of the system.

Platform Model : a “bottom up” model of how the real world system is to be
cast into a simulation. This includes: the system boundary, what parts of the
the Domain Model are being simulated; simplifying assumptions or abstrac-
tions; assumptions made due to lack of information from the domain experts;
removal of emergent properties (properties that should be consequences of
the simulation, rather than explicitly implemented in it).

Simulation Platform : the executable implementation. The development of
the simulator from the Platform Model is a standard software engineering
process.

Results Model : a “top down” conceptual model of the simulated world. This
model is compared with the Domain Model in order to test various hypothe-
ses. This part of the process is on-going research.

2.2 Modelling human behaviour and simulations with UML

UML (Unified Modelling Language) [12] is a suite of diagramming notations de-
signed to aid in the development of large object-oriented software engineering
projects by groups of developers working in teams. Ordinarily it is used in con-
junction with an object-oriented programming language; it has been shown to
be well suited to agent-based modelling [11], and the production of agent based



models [7, 14, 8, 6]. Here “agents”, representing humans, map naturally to agents
that can be described using UML. This allows for much of the structure of the
behavioural simulation to be represented in UML. We have also found that UML
is suitable for capturing simiplified human mental states that are significant to
the model (see §4.1).

3 The Research Context

Although we are modelling standing ovations we are interested in the wider
phenomena of tipping points and emergence in human behaviour. We use the
standing ovation as a simplified case of tipping points in social systems. Human
behaviour on both the individual and population level is very complex. People
can frequently behave in unpredictable ways, often doing things that may seem
counterintuitive or unexpected. People also have the capacity to consciously
go against, or follow the crowd, making predicting an individual’s behaviour
very difficult. At the population level however human behaviour becomes more
predictable. A herd mentality (the desire to belong) may mean that in the short
term at least it is possible to predict a future state of a group (or herd) of
people [15]. However, it is often the unexpected shifts in population behaviour
that we would like to be able to predict or detect. These tipping points are the
focus of our wider research and the model presented here was designed as a
simplified model of tipping point behaviour.

In the context of wider society social tipping points are very interesting [2,
9, 3]. Even when a human system appears to be relatively stable it could go
through a tipping point and change state completely. Here we define a tipping
point in a system as when it moves rapidly from one stable state to another state
which may or may not be stable. We therefore allow our definition to include
reversible changes, so even if the system goes back to its initial state we consider
it to have gone through a tipping point. Of particular interest to us are systems
that appear to be stable but have the potential to go through a tipping point. In
order to understand these systems we must identify the triggers and thresholds
that indicate the point at which the system tips.

Modelling an individual human would be extremely difficult but at the popu-
lation level it might be possible to break the behaviours thought to be of impor-
tance in a system down into a set of simple rules. The model can then capture
the abstract simple behaviours between agents that when simulated produce
the overall systems behaviour as an emergent property. In the model the syn-
chronised human behaviour of standing ovation is an emergent property of the
combination of the basic rules of the system, and the interaction between the
agents in their environment.

Standing ovations have been used as a model system for synchronised human
behaviour in a number of different contexts [16, 10, 5]. We focus on standing
ovations as a model system for a social tipping point, paying particular attention
to how the system is triggered; what constitutes a trigger; at what point can a



system be considered to have tipped; and does that allow us to predict the
outcome of a system?

4 The Domain Model: the standing ovation

Standing ovations capture many interesting aspects of synchronised human be-
haviour. Individual members of an audience are influenced by how good they
thought a performance was, and by the behaviours of the people around. De-
pending on the relative influence of these factors individuals might jump up and
start clapping, with little regard to what others might think, or wait to see if
others are going to stand up first. In fact there are many possibilities for both
showing appreciation, or dissatisfaction. In §4.1 we outline in more detail the
aspects of standing ovations that we are going to capture in the simulation. In
§4.2 we summarise how we capture these behaviours in UML.

4.1 The Mental Domain

A standing ovation is an emergent property of the relative influences on individ-
uals in an audience. We break the influences down into three simple parts:

– The individuals own personal enjoyment of the performance. If their enjoy-
ment is very high and they are likely to stand without paying much attention
to the rest of the audience. Similarly, if it is very low they are likely to remain
seated. The interesting social effects in the system will operate mainly on
the people who are somewhere in the middle.

– The behaviour of an individual’s immediate neighbours will modify this back-
ground likelihood of standing to either suppress it so they remain seated, or
activate it causing the individual to stand.

– The final influence on an individual is the room size. We assume that an
individual can make an assessment of the larger space and that this acts on
their background likelihood of standing in a similar way to the neighbour
interactions.

We will also look at what affect an individual being able to stand up again has
on the behaviour of the system.

4.2 Domain Model UML

In order to re-factor the simulator for its new use we start the process at the
Domain Model UML to get a sense of which parts of the simulator can remain
and which need to be wholely removed or significantly altered.



Fig. 2. Domain Model class diagram.

Domain Model use cases. During the development of the biological models
use case diagrams were used to capture the higher level interactions that were
to be included in the simulation [8]. For re-factoring the simulation for a new
use we didn’t find it advantageous to revisit the use case diagrams as we have
come to the conclusion that all of the relevant interactions can be captured in
the description of the domain class and state domain diagrams. Therefore unless
it is the case the application of the process would benefit greatly from use case
diagrams, they will not be used.

Domain Model class diagram. This captures the different aspects of the
system that are required as classes. At this point in the process is it desirable
to take forward only the parts of the Domain that we believe to be absolutely
necessary. The classes map directly to either the required spatial elements of
the system that we need to include in order to simulate standing ovations, or
the agents that exist in this space. This includes the Venue, and the Seating
within the Venue, which together define the space the system exists in. There is
also the class, PersonAgent, which is a simplified representation of the people in
the simulation. We also capture the required aspects of the performance in the
Performance class. These classes provide enough structure to allow us to model a
standing ovation. We also capture the emergent property of a standing ovation
SO. At this point it is a desired outcome of the interaction between the Venue,
Performance and PersonAgent classes (See figure 2).

Domain Model state diagrams. When describing a biological process state
diagrams prove very useful as they can easily show the different states that
biological objects can exist in and how they move between states [7]. In figure 3
we can see that in this model the number of physical states the PersonAgents



Fig. 3. Domain Model PersonAgent state diagram.

can be in is very limited, Sitting or Standing. We therefore propose that in the
case of modelling human behaviour (or any behaviour that is not manifested
in a physical change) it is advantageous to also model more abstract mental
states that are of importance to the model. These can then be included in the
diagrams which assists communication of important parts of the simulation. In
the mental state diagram, mental states provide information about what needs
to be captured by the model in order for the PersonAgents to transition from
the Sitting to the Standing state. Figure 4 shows the mental state diagram for a
PersonAgent. When a PersonAgent changes state they can go through a loop of
mental state transitions before they commit to either remaining in the same state
or transitioning to a different state. This loop incorporates what the individual is
considering doing, the state that their neighbours are in, and the different states
that the wider audience is in. In figure 3 it is possible to clearly label the state
transitions as Stands and Sits. However, when the mental processes are included
the transitions are more difficult to label as the physical state might not change
even though the PersonAgent has gone through a process of assessing whether it
is going to change state.

In some sense what we are attempting to capture by including mental states
in the Domain Model state digrams is an agents abstract individual tipping
point. The point at which an agent is required to make the decision to change
state they (for a short time) are no longer simply passively Sitting or Standing,
but instead are in a separate state of making a mental decision. The outcome
of this rather abstract mental state is either the Sitting or Standing, but during
the process a transition has occurred.

Upon entering the venue people are standing. A mental process then occurs
during which individuals assess what they want to do, taking into account the
state of the wider audience and their neighbours, in order to find their seat.
Throughout the performance this process will continue as there are a number
of possible reasons why a person may have to transition from a Sitting to a
Standing state. For the purposes of this simulation we are only interested in
people’s behaviour at the end of the performance.



Fig. 4. Domain Model mental PersonAgent state diagram.

5 The Platform Model

The Platform Model includes all the extra components that allow the simulation
to run. This includes all the processes required to get the simulation to a point
where it is able to start, and the components identified in the Domain Model
that are important to allow the behaviours of interest to occur. Also included
are any additional behaviours that are required for the model to function but
that might not be of explicit interest to the Research Context. These can be
implemented with a view to producing an efficient simulation rather than system
fidelity. Finally, we need to include aspects of a simulation that are not part of
the Domain but are required in order that simulation results may be observed
and documented.

5.1 Platform Model UML

The platform model UML bridges the gap between the Domain Model UML and
the final implementation of the model in code.

The Platform Model class diagram. The is produced from the Domain
Class diagram, with all emergent properties (such as a standing ovation, SO)
removed. Shown in figure 5 this is a high level diagram and includes the four main
components of the system, the Venue, PersonAgent, Seating, and Performance.
There is only one Venue, we assume that it has at least one Seating. That Seating
can either be unoccupied or have one PersonAgent in it. A Venue is assumed to
have at least one Performance.

The Platform Model class diagram, implementation level. This diagram
represents the structure of the underlying code of the simulation by including im-
plementation level data structures and any generalisable classes. Figure 6 shows



Fig. 5. Platform Model class diagram: included are the four main components of the
system being models, the Venue, PersonAgent, Seating and Performance.

the implementation of the classes carried forward from the Domain model. Seat-
ing is a child of the Area class. In this simulation each Area can only hold 0 or 1
PersonAgents, which is implemented as a specific class. The Areas are stored in
the Space, and to improve the performance of the simulation can either be (in
conjunction with a suitable programming language) separate threads of execu-
tion or grouped together in the separate executable buckets of Areas (executable
buckets are used in the Java implementation but left out of figure 6 to improve
readability). Structuring the Space in this way has advantages for investigating
the affect of the interaction between agents and the spacial environment, and
allows easy reproduction of interesting spaces (see §5.3 and §6).

Space has at least one SeatingZones, and a SeatingZones has at least one Area.
There are also EmptyAreas which are used for Space that are not processed by
the running simulation. The Space, Performance and SeatingZones are stored in
the Venue class. The purpose of the PersonAgent class is to contain the current
state of the PersonAgent. The PersonAgent’s interaction with the wider system is
mediated via the Seating and SeatingZones classes. In its current implementation
the Performance is almost unnecessary but in the future when we extend the
simulation to include more interaction between the performance and the audience
the complexity and importance of this class will increase. The Venue class acts
as a container for the simulated system. It could also fulfill any more abstract
requirements that the venue might have.

5.2 Comparing two models

The inclusion, during redevelopment, of a flexible Space makes it easier adapt
the simulation to its new purpose. The original modelling framework had at its
centre a flexible and extendible class that is the basis for all the different types
of space in the system [7]. This flexibility allows for the many different types
of space to be described. In this simulation the Area class that is held in the



Fig. 6. Implementation level Platform Model class diagram: The Venue has one Space,
at least one Performance, and at least one SeatingZones. The Space and is composed
of many Areas which can be one of the two child classes EmptyArea or Seating. Seating
belongs to one SeatingZones.

Space class is extended to describe seating (child class Seating). Each area of
Seating contains within it one agent representing a single person, PersonAgent.
The Seating class connects that agent with this environment. Via the Seating
class the agent can contact its neighbours, it can also sample from all of the
Seating areas of the simulation to gather information about any of the agents
in the system. Figure 7 shows the Platform Model class diagram for the auxin
simulation model described in [7]. By comparing this diagram with figure 6 is
it possible to see how at the implementation level very little of the underlying
structure of the model needed to be altered for its new purpose.

The behaviour of the model is controlled by running a method within the
extended Area classes called ‘process’. This processes any agents held in this part
of the space. What the different agents do is controlled by their implementation.
This structure means that no assumptions about how the agents are behav-
ing in space are transferred from one model implementation to another. What
does remain the same is the channels through which the agents get information
about their environment. However because this is ultimately determined by the
extended Area classes the exact information that flows is also specific to each
model. To move from an auxin transport model to a standing ovation model the
Area class was extended to describe the Seating in the Venue. The auxin model’s
Plant class, which is a general holding class, providing functionality similar to
a database, was simply renamed as Venue. The Cell class in the auxin model



Fig. 7. Implementation level Platform Model class diagram for the original auxin sim-
ulation:

implemented an abstract collection of different Areas (three different types, Cy-
toplasm, Membrane, and Vacuole, see figure 7). For the standing ovation model
this class is completely reimplemented as SeatingZones. SeatingZones is equiv-
alent to Cell as it is a collection of areas of Seating that can be considered as
‘together’ in the space, and information may flow differently between different
zones or within a zone. Currently these spatial zones are not generalised from a
parent class and therefore for this model the class was rewritten from the ground
up to ensure it provided the correct functionality.

During the process of reimplementation it became clear that the Cell and
SeatingZones classes share a number of common features. We are now working
on two generalizable classes, SpatialNetwork and AgentNetwork. SpatialNetwork
provides a basis for the implementation of abstract collections of spatial Areas,
which Cells and SeatingZones are examples off. AgentNetwork provides a basis
for abstract collections of agents. In the case of our standing ovation model this
could be men and women PersonAgents for example. These should not be con-
fused with the executable buckets of Areas mentioned in §5.1. It would however
be useful to implement the multi-threaded execution of the simulation with these
abstract collections if that seems feasible and desirable. The generalizable form
of the future framework is shown in figure 8. The introduction of these higher
level collections brings this framework closer to the framework described in [4,
13] (which the author was involved in developing). The modular design is delib-
erate as it helps to make clear what the foundations of the simulator are, these



Fig. 8. The class diagram of the generalisable simulation framework.

foundations can be extended helping avoid the reusing code implemented for old
models that are not suitable for the new purpose. The modeller is encouraged
to start from the generalizable classes not a previous implementation.

Platform Model state diagrams. These remain the same as the Domain
Model State Diagrams.

5.3 Space from Templates

The original auxin model was designed to allow for cell tissues to be loaded into
the simulation from a section through a real tissue [7]. This feature allows the
standing ovation model to load in approximations of real seating plans. These
seating layouts are read from template images into the simulation when it starts.
The template provides information on the position of all the seats in the system,
and how they are arranged in 2D space. Including any empty areas or gaps
between different sections of the audience.

This allows us in future to explore the effect of boundary conditions in the
system. Not only those at the edge of the seating, but also boundaries within
the seating. It is possible that the probability of a standing ovation fully taking
hold might be affected by the seating in many venues being in sections. The
small breaks in the seating may alter the dynamics of system, and the flow of
information within the system, changing how the audience responds as a whole.
It might be that the sectioning of the audience encourages a greater degree of



(a) A real seating plan of a lecture
theatre.

(b) A template approximated from
the real plan. For this simulation we
chose not to use seating zones but
they could have been used to pro-
duce a more faithful plan.

(c) A still from the running simulation. The light grey area of the
seating indicates that the PersonAgent is standing.

Fig. 9. By allowing the use of real seating plans we can compare real data with simu-
lations allowing the investigation of effect of changing the layout of the venue on the
system.

autonomy (I’m part of this group, the people overthere are a different group),
reducing the ability of a standing ovation to spread over the entire system, or
perhaps giving small sections of the audience the confidence to act alone.



6 Discussion

We have been able to show that the CoSMoS process can be used to assist with
the implementation of an existing model in a new area of scientific study. This is
in some ways an inherently dangerous method of producing a simulation. There
is the potential to use code that when originally written had at its foundation
assumptions that are not suitable for the new purpose. Where the CoSMoS
process becomes valuable is that it insists that the model implementation starts
from a suitable place: the Domain. Starting at the domain and working forward
provides useful information about which parts of the original model can be safely
reused. Once the unsuitable parts of the system are removed the process can then
be followed as normal to produce the new simulation.

This systematic process has two added benefits. Simply casting a simulation
into UML along with using the CoSMoS process can often highlight possible
improvements that can be made to the model and resulting simulator. Good ex-
amples include the identification of code that has been put in the wrong place,
and the discovery that parts of the system that have been excluded from the
Domain Model or not explicitly identified when they need to be. One example
is that there is a temptation to include aspects of agent behaviour in both the
Area and Agent classes which could be a source of confusion further on in the
development process. Avoiding this potential confusion also increases the modu-
larity of the simulation by encouraging consistency in the placement of methods.
Increasing the modularity of the simulator has helped in the development of an
efficient generalizable multi-threaded agent-based simulation framework. In fact
the generalizable framework emerged from the process. The adherence to the
CoSMoS approach has also ensured that its development has been systematic
and well understood. At each stage of the process effort has been made to under-
stand and acknowledge the decisions that have been made and why, and many
of the decisions are recorded.

It is true that the simulation framework produced is not completely gen-
eralizable and could not be used to produce any agent-based simulation. It is
unlikely that any such tool could be produced. We are also of the opinion that
the attempt should not be made. A completely generalizable framework would
either be susceptible to bloat in both size and complexity, resulting in a tool
that was difficult to maintain, fully understand, or apply appropriately. Or it
would become such light-weight collection of extendible classes that it would be
of greater advantage to develop a system of patterns instead. There then remains
the question of how do you determine when a general tool should be used over a
one-off efficient simulator? This is not an easy question as this framework started
as an efficient one-off simulator and has developed into a more generalizable tool.
The CoSMoS process has a lot of offer as a way of assisting this decision making
process. Even though we intuitively believed that the foundations of simulation
of auxin transport were suitable for modelling another 2D agent-based system,
following the CoSMoS process assisted in determining which parts could remain
and which needed to be rewritten or simply removed. The CoSMoS process
should therefore allow the developers and domain experts to determine if there



is a suitable existing tool (as long as they actually understand what the tool has
to offer), or if a new simulator is required.

Acknowledgements

We gratefully acknowledge the financial support from the Leverhulme Trust
who funds the Tipping Point project based in the Institute of Hazard, Risk and
Resilience at Durham University. We would also like to thank the developers
of the CoSMoS process. Finally we would like to thank the reviewers for their
detailed and very helpful comments, and Lauren Shipley for her assistance with
proof reading.



References

1. Paul S Andrews, Fiona A C Polack, Adam T Sampson, Susan Stepney, and Jon
Timmis. The CoSMoS Process version 0.1: A process for the modelling and simu-
lation of complex systems. Technical report, University of York, 2010.

2. M Batty. Discontinuities, tipping points, and singularities: the quest for a new
social dynamics. Environment and Planning B: Planning and Design, 35(3):379–
380, 2008.

3. William A Brock. Tipping Points , Abrupt Opinion Changes , and Punctuated
Policy Change by. PhD thesis, University of Wisconsin, 2004.

4. Alastair Droop, Philip Garnett, Fiona A C Polack, and Susan Stepney. Multiple
model simulation: modelling cell division and differentiation in the prostate. In
Susan Stepney, Peter Welch, Paul S Andrews, and Carl G Ritson, editors, Proceed-
ings of the 2011 Workshop on Complex Systems Modelling and Simulation, Paris,
France, August 2011, pages 79–111. Luniver Press, 2011.

5. Fernando Eesponda, Mat́ıas Vera-Cruz, Jorge Tarrasó, and Marco Morales. The
complexity of partition tasks. Complexity, 16(1):56–64, 2010.

6. S. Efroni, D. Harel, and I. R. Cohen. Towards rigorour comprehension of biological
complexity: modeling, execution, and visualization of thymic T-cell maturation.
Genome Res, 13(11):2485–2497, 2003.

7. Philip Garnett, Susan Stepney, Francesca Day, and Ottoline Leyser. Using the
CoSMoS Process to Enhance an Executable Model of Auxin Transport Canalisa-
tion. In S Stepney, P Welch, P. S. Andrews, and A. T Sampson, editors, CoSMoS
2010, pages 9–32, 2010.

8. Philip Garnett, Susan Stepney, and Ottoline Leyser. Towards an Executable Model
of Auxin Transport Canalisation. In W P Stepney Susan, Polack Fiona, editor,
CoSMoS 2008, pages 63–91. Luniver Press, 2008.

9. Suzanne B. Goldberg. Constitutional tipping points: Civil rights, social change, and
fact-based adjudication. COLUMBIA LAW REVIEW, 106(8):1955–2022, 2006.

10. John H Miller and Scott E Page. The standing ovation problem. Complexity,
9(5):8–16, 2004.

11. J Odell, H Parunak, and B Bauer. Extending UML for agents. In AOIS Workshop
at AAAI, pages 3–17, Austin, 2000.

12. OMG. Maintainer of the UML Standards., 2012.
13. Fiona A C Polack, Alastair Droop, Philip Garnett, Teodor Ghetiu, and Susan Step-

ney. Simulation validation: exploring the suitability of a simulation of cell division
and differentiation in the prostate. In Susan Stepney, Peter Welch, Paul S An-
drews, and Carl G Ritson, editors, Proceedings of the 2011 Workshop on Complex
Systems Modelling and Simulation, Paris, France, August 2011, pages 113–133.
Luniver Press, 2011.

14. Mark Read, Jon Timmis, Paul S. Andrews, and Kumar Vipin. Using UML to
Model EAE and its Regulatory Network. In Paul S. Andrews, Jon Timmis, Nick
D. L. Owens, Uwe Aickelin, Emma Hart, Andrew Hone, and Andy M. Tyrrell,
editors, Proceedings of 8th International Conference on AIS, volume 5666 of Lecture
Notes in Computer Science, pages 4–6–6, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

15. E.M. Rogers. Diffusion of Innovations. Free Press, New York, 1962.
16. Miklos N Szilagyi and Matthew D Jallo. Standing ovation: an attempt to simulate

human personalities. Systems Research & Behavioral Science, 23(6):825–838, 2006.


